电机散热系统中,空—空冷热交换器在大中型电机上的应用!
2020-12-29 11:34:41 来源:电机技术日参
【哔哥哔特导读】空——空冷却器主要由管束、风机、构架和百叶窗等部件组成,以空气为冷却介质,对流经管内的热流体进行冷却或冷凝;其中,冷却器管束数量和排布直接影响其冷却效果。
对于防护式电机,自身固有旋转部件、加装的风压元件及壳体内外冷却介质空气中的循环热传导,构成了电机发热元件与周围环境的直接热交换系统,确保电机稳定、可靠地正常运行。
对于封闭式电机,壳体内外空气的热交换路径被掐断,只能借助于壳体或专门设计的热交换装置,间接地将电机发热元件产生的热量散发到周围环境中。
中小型电机电机通风散热的风压元件主要包括风扇风罩组合、独立风机等,这些零部件可以强化电机的通风散热效果;而对于箱式机座的低压大功率及高压电机,则通过专用的冷却器,实现电机的散热冷却,而空——空冷热交换器(空冷柜)就是其中的一种。
对于大多数电机厂家,空冷柜通过外购方式进行生产组织,电机厂家与空——空冷却器厂家对接的主要参数包括接口尺寸、电机功率、极数、总损耗等。实力雄厚的电机制造厂,则会根据自身工艺装备开发高效、高质量、低成本空冷柜,实现高技术水平、低成本路线的品牌战略目标,或者说靠软硬实力双强优势占领市场。
空——空冷却器主要由管束、风机、构架和百叶窗等部件组成,以空气为冷却介质,对流经管内的热流体进行冷却或冷凝;其中,冷却器管束数量和排布直接影响其冷却效果。
从电机中出来的内风自下而上沿着径向流入冷却器,在导流隔板的作用下,分两路横向流过管束到达冷却器内上部空间。电机内产生的热量就这样通过循环内风路传递给换热管, 再通过换热管传递到外风路。热空气流过管束后折回高热电机内腔,即被冷却后的电机空气从左右两侧出口径向流出冷却器,进入电机。外循环风路路径为周围环境冷空气从空冷柜一端进入管束沿轴向流动,再从另一端流出进入周围环境,从而完成一轮循环:冷空气进入空冷柜、冷空气被加热、热空气流出空冷柜、热空气被冷却再次融入周围环境中,接着继续融入连续不断递进的冷热循环中。
大中型高压电动机的定、转子铁芯内部都有径向和轴向通风道,按照电机内部冷却空气流动的路径,电机内部的通风方式可分为径向通风和混合通风两种型式。电机不同的通风结构对于空空冷却器的要求不同,混合通风系统总体上属于串联风路,风路路径为一段段径向通道局部并联的轴向通道,风路路径长、风阻高、风压降大,需要在一端安装大尺寸离心风扇补偿风压损失。
冷却器风机的旋转方向必须与其转向指示牌相符,否则电机的散热效果大打折扣甚至散热效果几乎为0。在实际安装和使用过程中,经常会出现由风机旋转方向与要求不符导致的电机发热问题,为了避免该类问题的发生,冷却器出厂时应设置醒目的标志提示,确保安装及运行各具体环节的正确性。
声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我
们联系,我们将及时更正、删除,谢谢。
高集成化的芯片成为当下MCU领域研发和市场布局的重点,但是在实际应用中仍然面临散热等痛点问题,MCU厂商是如何解决和优化这些痛点?
最近一周,多家半导体大厂发布新品,其中英飞凌推出了D²PAK和DPAK封装的 TRENCHSTOP™的IGBT7系列器件,兆易创新、极海半导体等也在MCU、电机控制专用栅极驱动器等领域取得产品最新进展。
随着科技的发展,空调日渐普及,但是吊扇依旧受到众多消费者的青睐。英飞凌的永磁同步电机吊扇解决方案由非隔离的15V、700mA高压(HV)降压转换器ICE5BR2280BZ和单片集成NPN型电压调节器TLE4284供电,采用IM241系列CIPOSTM Micro IPM作为驱动。
800V高压电驱系统降本路径主要分为:结构创新、电机高速化、电驱系统高压化、电驱系统高效化、减速箱高速低成本化、油液混合冷却技术、一体化热设计与热管理以及可靠性降本。
汇川联合动力始终致力于技术创新,持续优化电驱动系统效率,为终端用户提供续航里程提升的卓越体验。
本文提出了两款永磁汽车发电机的转子结构:径向磁通的空心结构转子和切向磁通的高气隙磁密转子。二者的共同特点是将汽车发电机的两大性能指标之一的[零电流转速]降低到600rpm以下。该发电机非常适用于城市公交车,提高了效率,延长了车载蓄电池的使用寿命,节能节油,经济效益明显。
第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!
发表评论