简析铸铝转子的缩孔和裂纹缺陷
2020-12-14 14:22:40 来源:电机技术日参
【哔哥哔特导读】铸铝转子裂纹大都呈径向。有热裂纹和冷裂纹之分。热裂纹是结晶过程中高温下产生的,裂纹开口处表面呈氧化色,外形曲折而不规则。冷裂纹是凝固的铝进一步冷却过程中产生的,裂开表面干净、光滑、颜色和铝在室温时的断面一样,冷裂纹往往是连续直线状的,无交叉,常出现在表面。
电机铸铝转子的缺陷检查比较困难,在实际生产加工过程中要靠工艺参数和经验去控制和把握,而有的缺陷只有在后期试验过程才可以发现。今天Ms.参就铸铝转子的缩孔和裂纹缺陷与大家进行探讨,也很愿意各位能有好的意见和建议。
缩孔是铸铝转子凝固过程中局部补缩极差情况下引起的一种缺陷,其形态不规则,孔内粗糙不平,目视可见粗大的晶粒。对于较轻微分散的细小的缩孔称为缩松。缩孔经常发生在铸铝转子的上、下端环的内环接近铁心处,又以上端环缩孔为常见。
1缩孔、缩松产生的原因
●铝水、模具、铁心的温度匹配不合适,达不到顺序凝固合理补缩的目的。上模温度过低,铁心预热温度不均匀、温差大,常是造成上端环缩孔、缩松的主要原因。●模具结构的不合理,特别是内浇口截面过小或分流器过高补缩不良,也是造成上端环缩孔、缩松的一个原因。由于模具密封不良或安装不当造成漏铝,浇口铝水减少,也会造成缩孔或缩松。●离心机转速低,产生压力太小。●低压铸铝上端环缩孔、缩松常发生在风叶根部,这往往是上模温度过高,铁心预热温度太低或内浇口窄小造成的。
2防止产生缩孔、缩松的措施
●适当合理地掌握模具、铁心预热温度,使铝水得以顺序凝固补缩。●修改模具,适当加大内浇口截面,或降低分流器高度,以增大补缩作用。●适当地提高离心机的转速,采取适合被浇注转子的浇注方法。●低压铸铝要及时冷却上模;适当提高铁芯预热温度;适当增加内浇口截面;延长凝固时间。
3铸铝过程裂纹缺陷描述
铸铝转子裂纹主要是由于转子冷却过程中所产生的铸造应力,超过了铝导体当时(指产生裂纹的瞬间)的极限强度而产生的。铸铝转子裂纹大都呈径向。有热裂纹和冷裂纹之分。热裂纹是结晶过程中高温下产生的,裂纹开口处表面呈氧化色,外形曲折而不规则。冷裂纹是凝固的铝进一步冷却过程中产生的,裂开表面干净、光滑、颜色和铝在室温时的断面一样,冷裂纹往往是连续直线状的,无交叉,常出现在表面。
4为什么会产生裂纹?
●铝中杂质含量不合理。工业纯铝中常含有铁与硅,这些杂质影响铝的可塑性,大量实验分析证实,硅铁杂质含量比对裂纹的影响很大,当硅铁比小于1.5或大于10时,均不出现裂纹,硅铁比在1.5~10之间易出现裂纹。研究表明,Si/Fe之含量不合理是铸铝转子产生裂纹的主要原因,而铸铝工艺参数,端环尺寸与形状等因素,仅在过渡区中有影响。●铝水温度过高铝的结晶颗粒变粗,延伸率降低,承受不了在冷凝过程中产生的收缩力而形成裂纹。由于铝水温度增高,气体溶解度增大,特别是氢气的溶入,约占铝水中含气总量的60~90%,当铝水浇入铸型内冷却时,将析出氢气使铸件形成针孔,严重地影响铸件强度,表面则呈现裂纹。
●转子端环尺寸的影响端环尺寸不合理是产生裂纹(尤其是冷裂纹)的重要因素之一。一般端环的厚度和宽度之比小于0.4时,易产生裂纹。
5铸铝裂纹控制措施
●调整铝中硅铁含量之比值,即Si/Fe≤1.5,或提高Si/Fe≥10,但以降低的措施为好。因为含硅量低,铸造性能好,成本低。生产时只须加入适量的废硅钢片即可(加入前应预热烘干),但加铁量不宜过多,否则会降低铝的导电率,使转子电阻增大,容易引起断条。●设计转子端环时,应使其厚度与宽度之比值大于0.4。●严格控制铝水温度,最高不得超过780℃。
声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我
们联系,我们将及时更正、删除,谢谢。
近期,泰科电子、广濑电机、史陶比尔纷纷推出创新连接器产品,在性能、设计与应用上实现突破,为多行业发展提供新动能。
上海有色网信息科技股份有限公司将于2025年11月12-14日在浙江·宁波举办“IEMC 2025 SMM(第五届)电机年会暨产业链博览会”,由青岛市电机产业协会、湖州市电器工业商会和东莞市磁性材料行业协会协办。
在新能源汽车蓬勃发展的浪潮中,电机技术作为核心驱动力,正经历着前所未有的变革。深度集成化与智能化的双重趋势,不仅重塑了电机的性能与效率,更成为推动整个行业迈向更高层次的关键力量。
在工业4.0与智能制造的浪潮下,连接器作为设备系统的"神经节点",其性能直接决定着整体架构的可靠性与效率。
国外大厂新品一览!泰科电子、广濑电机近期推出连接器新品,覆盖汽车、工业自动化等领域,赋能国内高端连接器产业。
2025年4月20日,广东德珑磁电科技股份有限公司与合肥阳光仁发碳中和投资管理中心(有限合伙)签署投资协议,并已于4月30日完成交割,合肥阳光仁发碳中和投资管理中心(有限合伙)是阳光电源出资的产业基金,标志着阳光电源正式成为德珑磁电机构股东!
第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!
发表评论