哔哥哔特商务网 |资讯中心 |解决方案 登录 注册 |电子刊 |招聘/求职
您的位置:微电机世界网 >>技术与应用 >>新闻

别再找了,你要的电机知识绝大部分都在这里,电机必备知识分享

2020-08-28 14:21:27     来源:天孚微电机        

【哔哥哔特导读】04 电机启动时转速慢的原因?有两种情况,第一种是启动时转速慢启动后正常,那么可能是启动电容不匹配;或者是电机设计就是如此(不同应用场所电机设计都不一样);也有可能是负载阻力太在造成启动时间过长。

在购买电机时,用户都会遇到一各种各样的问题,如参数、安装、维护等等。今天小编综合了用户遇到的几种常见问题解答为大家做为参考,这些问题不仅只限于微型直流电机,也有普通电机、铝壳电机、变频电机、三相异步电机等电机问题。

01 漏电短路器在使用变频器容易跳闸是什么原因?变频器输出的波形会有高次谐波,但是电机和变频器和电机间的电缆会产生泄露电流,这个电流会比工频驱动电机时大很多所以就会出现跳闸现象。由于变频器输出的漏电流是工频电流的3倍左右,再加上电机等漏电流,所以选择漏电保护器电流应大于工频电流的10倍左右。

02 用电机做变频调速实验,是否必须要用变频电机?如果是做变频调速实验的花并非一定要用变频电机,普通的交流电机、直流电机也可以。

交流变频电机实际上就是一种靠调节交流电频率来调速的电机,主要靠变频器。注:电机本身是不会变频的,需要普通电机加变频器才能实现变频。

直流电机变频不同,以直流电机变频空调为例:是通过把工频交流电机再转换为直流电,然后送至功率模块,受微电脑控制型号,受控直流电送至压缩机的直流电机,控制压缩机的排量实现变频调速。

03 减速机的作用?降低电机的输出转速、提高数据扭力。

04 电机启动时转速慢的原因?有两种情况,第一种是启动时转速慢启动后正常,那么可能是启动电容不匹配;或者是电机设计就是如此(不同应用场所电机设计都不一样);也有可能是负载阻力太在造成启动时间过长。

第二种情况就是启动后转速还是很慢,那么就需要考虑电压不足、电容不匹配、转动阻力大等因素。

05 怎么选择异步电机的电刷?首先要知道电刷的工作条件能不能满足电流密度和集电环圆周边缘的线速度,可以用公式确定:

电刷载流量=电刷电流密度×电刷宽度×电刷厚度≥电机转子额定电流

集电环圆周边缘的线速度=电机额定转速×集电环周长≤电刷适用的规定范围

电刷一般有石墨电刷、金属电刷、电化石墨电刷等,使用中应注意经常检查电刷活动情况、电刷压力和磨损程度。电刷在刷握中要能上下自由活动,无卡阻。卡刷时把电刷两侧面在砂布上磨平即可。电刷的压力要根据电刷的品种和型号进行合适的调整。目前附在刷握上的电刷压紧弹簧多属拉伸压缩弹簧,其压力随着电刷的磨损逐渐减小,故在电机运行过程中,其电刷压力应随时调整。

06 60HZ的电机放在50HZ的电源上用,需要注意什么?这是由于电机的电流频率低于设计频率,要使其转动中产生的空载反电动势减小、空载电流增大,对电机造成损坏,因此就要求其空载电压降低了。

在变频调速技术中,电动机的频率和定子电压是同时改变的。即是频率下降,电压也要同时下降,电动机才不会过流,才会得到理想的运行效果。

07 变频器输出端为什么要加输出电抗器,它作用是什么?变频器输出端增加输出电抗器,是为了增加变频器到电动机的导线距离,输出电抗器可以有效抑制变频器的IGBT开关时产生的瞬间高电压,减少此电压对电缆绝缘和电机的不良影响。

电抗器的主要作用:是用以限制电机连接电缆的容性充电电流及使电机绕组上的电压上升率限制在540V/μs以内,它还用于钝化变频器输出电压(开关频率)的陡度,减少逆变器中的功率元件(如IGBT)的扰动和冲击。

08 交流伺服电机可以用变频器控制吗?由于变频器和伺服在性能和功能上的不同,应用也不大相同,所以是不可以的。

在速度控制和力矩控制的场合要求不是很高的一般用变频器,也有在上位加位置反馈信号构成闭环用变频进行位置控制的,精度和响应都不高。现有些变频也接受脉冲序列信号控制速度的,但好象不能直接控制位置。

在有严格位置控制要求的场合中只能用伺服来实现,还有就是伺服的响应速度远远大于变频,有些对速度的精度和响应要求高的场合也用伺服控制,能用变频控制的运动的场合几乎都能用伺服取代。

关键是两点:一是价格伺服远远高于变频,二是功率的原因:变频最大的能做到几百KW,甚至更高,伺服最大就几十KW。伺服的基本概念是准确、精确、快速定位。变频是伺服控制的一个必须的内部环节,伺服驱动器中同样存在变频(要进行无级调速)。

09 调速电机能频繁起动吗?调速电动机能频繁启动,我们公司做调试用的电机都是调速电机,经常这样频繁启动,也没出现过怎么问题。不过能尽量减少频繁启动当然是最好了。不管怎么电机频繁启动次数多,对电机都会有损害。

10 怎么才能知道电机是星型/三角接法?星形接法是三相绕组一端相连,另一端分别接三相电源,形状像字母“Y”;三角接法是三相绕组首尾相连,形成一个“△”形,三角形的顶端再接三相电源。

它们的相电压不同,一般星形接法的电机额定电压是220V,三角接法的额定电压是380V。 接法在接线盒的盖板内外侧一般都会有标明,不同的接法对应不同的电源电压。

11 电机的极数对其选用有何影响?电机目前有2/4/6/8级电机,特殊用途的电机级数可能更高。电机的极对数越多,电机的转速就越低,但它的扭距就越大;

在选用电机时,您要考虑负载需要多大的起动扭距,比如象带负载起动的就比空载起动的需要扭距就大,如果是大功率大负载起动,还要考虑降压启动(或星三角启动);

至于在决定了电机极对数后和负载的转速匹配问题,则可考虑用不同直径的皮带轮来传动或用变速齿轮(齿轮箱)来匹配。如果由于决定了电机极对数后经过皮带或齿轮传动后达不到负载的功率要求,那就要考虑电机的使用功率问题了。

12 什么是串激电机,具体原理是什么?串激(串励)电机就是定子绕组和转子绕组串联的。

工作原理:在交流电源供电时,产生旋转力矩的原理,仍可以用直流电动机的运转原理来解释。当导体中通有电流时,在导体的周围产生磁场,其磁力线的方向取决于电流方向。将通电的导体放入磁场中,这磁场与通电导体所产生的磁场相互作用,将使此导体受到一个作用力F,并因此而产生运动,导体会从磁力线密的地方向磁力线稀的方向移动,当将由两个互相相对的导体组成的线圈放入磁场时,线圈的两个边也受到了作用力,此二力的方向相反,产生力矩。当线圈在磁场中转动时,相应的二个线圈边,从一个磁极下转到另一个磁极下时,此时由于磁场极性有了改变,将使导体受到的作用力的方向改变,也使转矩的方向改变,从而使线圈向反方向转动,于是线圈只能绕中心轴来回摆动。

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我

们联系,我们将及时更正、删除,谢谢。

  • 赞一个(
    0
    )
  • 踩一下(
    0
    )
分享到:
阅读延展
直流电机 电机
  • 高集成的MCU方案已成电机应用趋势?

    高集成的MCU方案已成电机应用趋势?

    高集成化的芯片成为当下MCU领域研发和市场布局的重点,但是在实际应用中仍然面临散热等痛点问题,MCU厂商是如何解决和优化这些痛点?

  • 新品速递|关注英飞凌、兆易创新、极海...多家半导体厂商新品动态

    新品速递|关注英飞凌、兆易创新、极海...多家半导体厂商新品动态

    最近一周,多家半导体大厂发布新品,其中英飞凌推出了D²PAK和DPAK封装的 TRENCHSTOP™的IGBT7系列器件,兆易创新、极海半导体等也在MCU、电机控制专用栅极驱动器等领域取得产品最新进展。

  • 基于XMC1302的吊扇解决方案

    基于XMC1302的吊扇解决方案

    随着科技的发展,空调日渐普及,但是吊扇依旧受到众多消费者的青睐。英飞凌的永磁同步电机吊扇解决方案由非隔离的15V、700mA高压(HV)降压转换器ICE5BR2280BZ和单片集成NPN型电压调节器TLE4284供电,采用IM241系列CIPOSTM Micro IPM作为驱动。

  • 如何实现新能源汽车800V高压电驱系统低成本化

    如何实现新能源汽车800V高压电驱系统低成本化

    800V高压电驱系统降本路径主要分为:结构创新、电机高速化、电驱系统高压化、电驱系统高效化、减速箱高速低成本化、油液混合冷却技术、一体化热设计与热管理以及可靠性降本。

  • 汇川联合动力Si-SiC混合模块电机控制器——PD4H混碳电控

    汇川联合动力Si-SiC混合模块电机控制器——PD4H混碳电控

    汇川联合动力始终致力于技术创新,持续优化电驱动系统效率,为终端用户提供续航里程提升的卓越体验。

  • 稀土永磁NdFeB新型汽车发电机的研发

    稀土永磁NdFeB新型汽车发电机的研发

    本文提出了两款永磁汽车发电机的转子结构:径向磁通的空心结构转子和切向磁通的高气隙磁密转子。二者的共同特点是将汽车发电机的两大性能指标之一的[零电流转速]降低到600rpm以下。该发电机非常适用于城市公交车,提高了效率,延长了车载蓄电池的使用寿命,节能节油,经济效益明显。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
Copyright Big-Bit © 1999-2013 All Right Reserved 哔哥哔特资讯 版权所有      未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任