哔哥哔特商务网 |资讯中心 |解决方案 登录 注册 |电子刊 |招聘/求职
您的位置:微电机世界网 >>技术与应用 >>新闻

磁悬浮高速电机刚性转子的自动平衡方法

2020-06-17 17:46:21     来源:电气新科技        

【哔哥哔特导读】在旋转机械中,转子不平衡产生的离心力将引起转子的不平衡振动,转速越高,不平衡激励力就越大,引起转子的振动就越剧烈。因此有必要采取主动控制策略对转子的不平衡振动进行抑制。不平衡补偿和自动平衡是AMB刚性转子系统不平衡振动主动控制的两种有效方法。

主动电磁轴承(Active Magnetic Bearing, AMB)具有无摩擦、适合高速运行以及使用寿命长等优点。采用主动电磁轴承的高速电机具有体积小、功率密度高等优点,额定转速可达每分钟几万甚至十几万转,因此AMB广泛应用于涡轮分子泵、压缩机、飞轮储能等高速旋转机械领域。

在旋转机械中,转子不平衡产生的离心力将引起转子的不平衡振动,转速越高,不平衡激励力就越大,引起转子的振动就越剧烈。因此有必要采取主动控制策略对转子的不平衡振动进行抑制。不平衡补偿和自动平衡是AMB刚性转子系统不平衡振动主动控制的两种有效方法。

不平衡补偿是通过对位移进行补偿,实现位移最小控制,能够提高转子的转动精度。不平衡补偿既可以直接对转子的不平衡力进行补偿,也可以对转子的不平衡位移进行补偿,前者与转子的转速相关,而后者与转子的转速无关。

毛川等提出了一种基于实时变步长的转子等效不平衡力系数的多边形迭代寻优算法,使AMB产生一个与等效不平衡力大小相同、相位相反的补偿力,以有效地减少转子的振动。蒋科坚等根据转子不平衡质量的实时位置,进而产生控制信号,对不平衡质量位置进行补偿,从而克服了控制器连续频繁计算,实现了转子不平衡的补偿。N. Taiki等研究了AMB刚性转子系统不平衡振动的补偿器峰值增益控制和相变控制方法,并证明了峰值增益控制可以有效抑制不平衡振动。Fang Jiancheng等基于带通滤波器提出了一种不平衡补偿控制策略,使转子绕其几何轴旋转。孙玉坤等针对传统磁悬浮开关磁阻电机存在的多变量非线性强耦合问题,提出一种混合双定子磁悬浮开关磁阻电机。蓝益鹏等采用混合灵敏度H∞控制策略设计了鲁棒控制器,孙鲲鹏等和孙玉坤等分别基于无速度传感器控制和滑模控制算法设计了鲁棒控制器,均可实现高速电机的稳定运行。宋腾等研究了基于最小位移的AMB转子变极性最小均方(Least Mean Square, LMS)反馈不平衡补偿方法来抑制转子不平衡振动。这些研究结果均表明,不平衡补偿虽然提高了转子旋转的精度,但高速时易造成功放饱和,甚至导致系统失稳。另外,引入的不平衡补偿器也增加了控制系统的复杂性和设计难度。

自动平衡是通过对电流或者电磁力进行补偿,实现电流或者电磁力的最小控制。

宋立伟等分析了力耦合特性对混合式磁轴承的影响。D. Saito等将传统转子系统径向不平衡振动控制的增益峰值控制、自动平衡控制和相位变量控制等方法用于轴向振动的控制。S. L. Chen等采用侵入流不变型原理研究了三磁极结构AMB转子系统的自适应不平衡力补偿,但分析过程十分复杂。S. K. Mohamed等将不平衡力看作是导致转子在旋转过程中的周期性谐波扰动,用二阶滑模控制器来实现AMB转子系统在宽速度范围内的稳定运行,但滑模面的高频切换容易引起高频振荡,引入高频噪声且不易消除。Zheng Shiqiang等研究了基于同步旋转框架变换的AMB转子自动平衡新方法,通过优化电磁力以抑制不平衡力。N. Amin等研究了一种多输入多输出AMB转子系统的辨识与鲁棒控制,既考虑了转子静止时的恒定扰动,又考虑了旋转时离心力和质量不平衡引起的正弦扰动,但该模型过于依赖系统的建模。Lin Chao等提出了一种基于自定心控制等效电磁力的刚性转子在线动平衡方法,有效地消除了转子不平衡对系统稳定性和运动精度的影响。Gao Hui等将LMS算法与不平衡前馈补偿相结合,并引入H∞控制,实现自动平衡。Zheng Shiqiang等提出一种基于坐标变换的陷波器结合前馈补偿的方法,但适用于转速变化不大的情况。Chen Qi等将自适应陷波器和自适应频率估计器用于自动平衡,但需调整两个参数,而且仅在恒定转速下进行了验证。针对以上研究中存在的问题,本文将极性切换自适应陷波器应用于磁悬浮高速电机刚性转子系统的自动平衡控制。

其创新点体现在两个方面:

第一,为实时有效地消除由不平衡力产生的与转速同频的径向振动分量,设计了自适应陷波器,以实现最小电流或电磁力控制,提高转子在高速区悬浮的稳定性;第二,针对磁悬浮刚性转子在径向刚体临界转速附近运行时系统闭环稳定性条件不同的问题,提出了基于极性切换的自动平衡控制,并结合自适应陷波器实现AMB高速电机刚性转子系统在包含刚体临界的全转速范围内的稳定运行。

研究人员针对磁悬浮高速电机刚性转子系统的不平衡振动,建立了磁悬浮高速电机刚性转子系统的径向动力学模型,通过分析自适应陷波器的原理提出了基于极性切换自适应陷波器的自动平衡策略,利用闭环系统的根轨迹得到了极性切换规律,进而构造陷波器反馈控制和前馈控制,实现磁悬浮高速电机刚性转子系统径向电磁力最小控制和在包含刚体临界的全转速范围内稳定运行。

仿真和实验均验证了多种工况下基于自适应陷波器自动平衡控制策略能够有效地抑制磁悬浮高速电机刚性转子系统不平衡同步振动及传递力。

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我

们联系,我们将及时更正、删除,谢谢。

  • 赞一个(
    0
    )
  • 踩一下(
    0
    )
分享到:
阅读延展
高速电机 电机
  • 永磁BLDC电机家电应用领域市场分析

    永磁BLDC电机家电应用领域市场分析

    永磁BLDC电机作为高速电机的主流选择,正在各个应用领域快速渗透。其中在家电领域的渗透率还有极大发展空间。目前,家电产品对于永磁BLDC电机的技术有何要求?对于控制器的设计提出哪些新要求?永磁BLDC电机在家电领域市场的发展空间还有多大?本文通过与各位电机行业专家进行探讨,为您解答!

  • 为何要采用高转速电机拖动低转速设备?

    为何要采用高转速电机拖动低转速设备?

    从变速传动的机理分析,当电机轮大于被拖动设备轮直径时,是了为获取高转速的一种传动,反之,当电机轮小于被拖动设备轮直径时,是了为获取高转矩的一种传动。从能量转换的角度分析,采用高速电机拖动设备是一种相对节能的方案。

  • 高速电机和低速电机的区别

    高速电机和低速电机的区别

    高速电机通常是指转速超过10000r/min的电机。它们具有以下优点:一是由于转速高,所以电机功率密度高,而体积远小于功率普通的电机,可以有效的节约材料。二是可与原动机相连,取消了传统的减速机构,传动效率高,噪音小。

  • 谈永磁无刷直流电机的设计特点

    谈永磁无刷直流电机的设计特点

    目前三相永磁无刷直流电动机应用最为广泛。逆变器采用半桥结构的三相三状态工作方式时,多用于小功率高速电机;逆变器采用桥式结构的三相六状态工作方式时,可应用于多种驱动系统中。由于绕组电动势非正弦,其中含有大量高次谐波,所以三相绕组多采用星形连接。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
Copyright Big-Bit © 1999-2013 All Right Reserved 哔哥哔特资讯 版权所有      未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任