哔哥哔特商务网 |资讯中心 |解决方案 登录 注册 |电子刊 |招聘/求职
您的位置:微电机世界网 >>技术与应用 >>新闻

谈电机设计中轴承的选择

2019-07-01 16:39:34     来源:电机技术日参        

【哔哥哔特导读】对电机设计者来说,轴承的选用至关重要。电机结构设计的主要任务之一就是分析计算轴承的设计寿命及疲劳寿命,确定轴承尺寸。

对电机设计者来说,轴承的选用至关重要。电机结构设计的主要任务之一就是分析计算轴承的设计寿命及疲劳寿命,确定轴承尺寸。

轴承选型不仅要考虑润滑脂老化引起的润滑脂寿命、磨损、噪声,还需要根据电机的不同用途,对精度、配合、游隙、保持架、润滑脂、密封结构、装卸及其他特殊要求进行综合评估。

电机轴承在不同环节的控制要素

使用机械与设计寿命在选择轴承时,加大疲劳寿命系数,意味着要选择大的轴承,但必须兼顾轴的强度、刚性、安装尺寸等,疲劳寿命不一定是唯一限定条件。各种机械所使用的轴承,根据使用条件,有基准设计寿命,以经验疲劳寿命系数表示。

轴承安装与配合轴承安装时,轴承内径与轴、外径与外壳的配合非常重要。

当配合过松时,配合面会产生相对滑动,雪崩般迅速磨损配合面,损伤轴或外壳;同时,磨损粉末会侵入轴承内部,进一步加剧磨损,造成发热、振动和破坏。

配合过紧或过盈量过大,一方面会导致外圈外径变小或内圈内径变大,减小轴承内部游隙;另一方面由于外圈或内圈往往变形不均匀,轴承噪音加大。此外,轴和外壳加工的几何精度也会影响轴承套圈的原有精度,从而影响轴承的使用性能。

滚动轴承配合选用原则
● 轴承套圈相对于负荷的状况

相对于负荷方向为旋转或摆动的套圈,应选择过盈配合或过渡配合。相对于负荷方向固定的套圈应选择间隙配合。当以不可分离型轴承作流动支承时,则应以相对于负荷方向为固定的套圈作为游动套圈,选择间隙配合或过渡配合。

● 负荷的类型和大小

当受冲击负荷或重负荷时,一般应选择比正常、轻负荷时更为紧密的配合。对于向心轴承负荷的大小用径向当量动负荷与径向额定动负荷的比值来划分,负荷越大配合过盈越大。

● 轴承游隙

轴承游隙采用过盈配合会导致轴承游隙的减小,应检验安装后轴承的游隙是否满足使用要求,以便正确选择配合及轴承游隙。

● 其它因素

轴和轴承座的材料、强度和导热性能;外部因素及在轴承中产生热的导热途径和热量,支承安装和调整性能等都会影响配合的选择。

影响轴承游隙的因素
所谓轴承内部游隙,即指轴承在未安装于轴或轴承箱时,将其内圈或外圈的一方固定,然后使未被固定的一方做径向、轴向或角向移动时的移动量。根据移动方向,可以分为径向游隙、轴向和角向游隙。

轴承运转时由于轴承配合以及内外圈温差的原因,一般要比初期游隙小,从理论上讲,轴承在运转时,略带负的运转游隙,则轴承的寿命最大。但要保持这一最佳游隙是非常困难的。随着使用条件的变化,轴承的负游隙会相应增大,从而导致轴承寿命显著下降或发热。因此,一般将轴承的初期游隙定为略大于零。

(1)过盈造成的游隙减少量

轴承采用静配合安装于轴或轴承箱上时,内圈膨胀,外圈收缩,导致轴承内部游隙减少。内圈或外圈的膨胀或收缩量,因轴承形式、轴和轴承箱形状、尺寸及材料不同而不同,大致近似过盈量的70%~90%。

(2)内、外圈温度差造成的游隙减少量

轴承运转时,一般外圈温度比内圈或滚动体温度低5~10℃。若轴承箱发热量大或轴连着热源,或空心轴内部有热流体流动,则内外圈温度差更大,该温度差造成的内外圈热膨胀量之差便成为游隙减少量。

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我

们联系,我们将及时更正、删除,谢谢。

  • 赞一个(
    1
    )
  • 踩一下(
    0
    )
分享到:
阅读延展
电机
  • 高集成的MCU方案已成电机应用趋势?

    高集成的MCU方案已成电机应用趋势?

    高集成化的芯片成为当下MCU领域研发和市场布局的重点,但是在实际应用中仍然面临散热等痛点问题,MCU厂商是如何解决和优化这些痛点?

  • 新品速递|关注英飞凌、兆易创新、极海...多家半导体厂商新品动态

    新品速递|关注英飞凌、兆易创新、极海...多家半导体厂商新品动态

    最近一周,多家半导体大厂发布新品,其中英飞凌推出了D²PAK和DPAK封装的 TRENCHSTOP™的IGBT7系列器件,兆易创新、极海半导体等也在MCU、电机控制专用栅极驱动器等领域取得产品最新进展。

  • 基于XMC1302的吊扇解决方案

    基于XMC1302的吊扇解决方案

    随着科技的发展,空调日渐普及,但是吊扇依旧受到众多消费者的青睐。英飞凌的永磁同步电机吊扇解决方案由非隔离的15V、700mA高压(HV)降压转换器ICE5BR2280BZ和单片集成NPN型电压调节器TLE4284供电,采用IM241系列CIPOSTM Micro IPM作为驱动。

  • 如何实现新能源汽车800V高压电驱系统低成本化

    如何实现新能源汽车800V高压电驱系统低成本化

    800V高压电驱系统降本路径主要分为:结构创新、电机高速化、电驱系统高压化、电驱系统高效化、减速箱高速低成本化、油液混合冷却技术、一体化热设计与热管理以及可靠性降本。

  • 汇川联合动力Si-SiC混合模块电机控制器——PD4H混碳电控

    汇川联合动力Si-SiC混合模块电机控制器——PD4H混碳电控

    汇川联合动力始终致力于技术创新,持续优化电驱动系统效率,为终端用户提供续航里程提升的卓越体验。

  • 稀土永磁NdFeB新型汽车发电机的研发

    稀土永磁NdFeB新型汽车发电机的研发

    本文提出了两款永磁汽车发电机的转子结构:径向磁通的空心结构转子和切向磁通的高气隙磁密转子。二者的共同特点是将汽车发电机的两大性能指标之一的[零电流转速]降低到600rpm以下。该发电机非常适用于城市公交车,提高了效率,延长了车载蓄电池的使用寿命,节能节油,经济效益明显。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
Copyright Big-Bit © 1999-2013 All Right Reserved 哔哥哔特资讯 版权所有      未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任