大比特商务网 |资讯中心 |技术论坛 |解决方案 登录 注册 |电子刊 |招聘/求职
您的位置:微电机世界网 >>技术与应用 >>新闻

电晕放电的危害及特征

2019-10-12 16:52:44     来源:电机技术日参        

【大比特导读】此时,在电离的绝缘线圈表面呈现蓝色荧光,即电晕现象。电晕产生热效应和臭氧、氮的氧化物而损坏绝缘。

高压电机生产过程中,如果绝缘结构本身有缺陷,或生产制造过程中线圈绕包、整形或端部固定等存在问题,很容易出现这类问题。

高压电机定子绕组端部出槽口部位及径向通风道内槽口部位绝缘线圈表面电场强度高且分布不匀,当局部场强达到临界场强时,气体发生局部电离或电子碰撞游离,形成持续性连锁反应的“电子崩”放电。此时,在电离的绝缘线圈表面呈现蓝色荧光,即电晕现象。电晕产生热效应和臭氧、氮的氧化物而损坏绝缘。

电机

定子热固性绝缘线圈表面层与槽壁间接触不良或不稳定而窜动时,因电磁力的振荡作用,接触点若即若离,引起槽内电火花放电,使局部温度上升,达摄氏上百度至上千度,绝缘表面受到严重的电腐蚀,极短时间造成深达1毫米及以上麻点斑坑,且电腐蚀部位随着振动、接触条件的变化而非规律性变动,导致绝缘击穿。

与其他绝缘材料相比,空气更容易发生电晕放电。因而,高压电机线圈包扎、端部紧固及浸烘过程是控制的关键。

电晕放电有何特征?

在高压电机试验和运行过程中,有时会出现有“嘶嘶”的声音,也就是我们所说的电晕放电声。

电晕放电的特征是伴有“嘶嘶”的响声,有时有微弱的辉光;当导体上有曲率半径很小的尖端存在时,则发生电晕放电。电晕放电可能指向其他物体也可能不指向某一特定方向。

电晕放电时,尖端附近的场强很强,尖端附近气体被电离,电荷可以离开导体;而远离尖端处场强急剧减弱,电离不完全,因而只能建立起微小的电流。

电晕放电可以是连续放电,也可以是不连续的脉冲放电。电晕放电的能量密度远小于火花放电的能量密度。在某些情况下,如果升高尖端导体的电位,电晕会发展成为通向另一物体的火花。

形成电晕所需电场不均匀的程度与气体的种类有很大关系。在负电性的气体中,当电极为球一平面、电极间隙为球半径时,产生电晕放电。相反,若气体为非负电性气体时,则不产生电晕放电。

电晕放电的极性决定于具有小曲率半径电极的极性。如果曲率半径小的电极带正电位,则发生正电晕放电,反之发生负电晕放电。此外,按提供的电压类型也可将电晕放电分为直流电晕、交流电晕和高频电晕。按出现电晕电极的数目分为单极电晕、双极电晕和多极电晕。

本文由大比特商务网收集整理(www.big-bit.com)

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除,谢谢。

  • 赞一个(
    0
    )
  • 踩一下(
    0
    )
分享到:
阅读延展
电机
  • 高压电机线圈绝缘问题分析探讨

    高压电机线圈绝缘问题分析探讨

    热固性合成树脂绝缘与沥青比较,电气、机械和耐热等性能均显著提高,与此相应的云母带补强材料也由天然纤维改用有机合成纤维或玻璃纤维织物。

  • 电机为何会发生局部放电?

    电机为何会发生局部放电?

    高压电机的绝缘结构中通常会出现局部放电,但局部放电的大小、数量和位置取决于电机的设计、材料、制造工艺、质量、运行环境和老化状况。

  • 科技创新!可夹取0.03㎜物体 中国电科双臂协作机器人灵活又能干

    科技创新!可夹取0.03㎜物体 中国电科双臂协作机器人灵活又能干

    近日,在第二十四届中国(国际)小电机技术研讨会暨展览会上,可以看到一款由中国电科带来的拥有14个关节的双臂协作机器人,只见“他”蓝白相间,双臂呈拥抱状上下摆台,身体上还“画”了两个眼睛,十分可爱。

  • 高压电机电晕的产生及其危害

    高压电机电晕的产生及其危害

    高压电机定子绕组在通风槽口及直线出槽口处、绕组端部电场集中,当局部位置场强达到一定数值时,气体发生局部电离,在电离处出现蓝色荧光,这即是电晕现象。

  • 三角形及星接法的关系及优劣比较

    三角形及星接法的关系及优劣比较

    仔细观察我们还可以发现,小规格电机大多是星接法,而大规格电机为三角形接法;我们同样可以发现,起重冶金电机都采用星接法。可能有人会问,除电源电压的要求外,对于电机本身,两种接法有什么区别?

  • 电机成形绕组与散嵌绕组的对比分析

    电机成形绕组与散嵌绕组的对比分析

    直流电机、大规格低压电机和高压电机电枢线圈大多都采用成型线圈,成型线圈一般为绝缘扁铜线制成的,较容易保持一定形状。成型绕组就是由成型线圈组成,在嵌线前先将线圈加工成相对固定的形状,嵌入铁芯槽后原则上不再进行整形。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“大比特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得大比特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
Copyright Big-Bit © 1999-2013 All Right Reserved 大比特资讯公司 版权所有      未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任